Decoding EEG Data Using Machine Learning

Dr. Firat Soylu

The University of Alabama http://fsoylu.people.ua.edu Sabancı University, CS Seminar

June 16, 2023

Motivation

- Improve analysis of EEG data using machine learning (ML) methods.
- Develop heuristics for analyzing neuroscience data with ML methods.

Outline

- EEG (Electroencephalogram)
- Use of EEG in cognitive neuroscience
- Traditional EEG data analysis methods
- Machine learning with EEG (and other neuro) data
- A path for future

Invention of EEG

- Hans Berger (1929)
 - Also discovered Alpha waves
- Initially met with skepticism

Electroencephalogram

- Used for studying sensory, attentional & cognitive processes
- Cheap
- Non-invasive
- Easy to use with children

What does EEG measure?

- Voltage in each electrode relative to a reference electrode
- Signals are weak and have to be amplified (x10K-50K)
- Sampling rate ranges from 500 2000 Hz
- Low/high pass filters to filter noise

Principles of EEG

- Measures electrical activity in the (mostly) cortex
- Activity oscillates at different frequencies
- Measured in hertz (Hz) cycles/sec
- Most activity is between 0-100 Hz

Delta (1 - 3 Hz)

Theta (4 - 7 Hz)

Alpha (8 – 12 Hz)

Beta (13 – 35 Hz)

Gamma (36 – 100 Hz)

Frequency Bands

Event-related potentials

• Frequency analysis

• Time-frequency analysis

Figure: Courtesy of Steve Luck, ERP Bootcamp

Example: N170

N400

Violation of a semantic expectation

Traditional EEG/ERP Analysis

- Determine relevant electrode sites
- Determine relevant time intervals
- Extract measurements
- Conduct inferential stats

Enter Machine Learning ...

- Fewer a priori assumptions about the spatial location and time intervals for effects
- Allows testing effects distributed across different electrode sites and time intervals
- Good for conducting research in new domains

Soylu, F., Rivera, B.*, Anchan, M.*, & Shannon, N. (2019). ERP differences in processing canonical and noncanonical finger-numeral configurations. Neuroscience Letters, 705, 74–79. https://doi.org/10.1016/j.neulet.2019.04.032
Soylu, F. (2019). Public dataset: ERP differences in processing canonical and noncanonical finger-numeral configurations, *Harvard Dataverse*.

Research Question:

Do previous experiences with montring and counting lead to higher automaticity?

Results

- Higher behavioral performance for montring
- Higher P1/N1 positivity for montring
 - Feature-based attention system, focusing on features matching with a template.
- Similar P3 for montring and counting
 - Memory allocation as opposed to use of counting or subitizing

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

-Marcel Proust

Decoding with SVM

Salehzadeh, R.*, Rivera, B., Man, K., Jalili, N., & Soylu, F. (2023). EEG Decoding of Finger Numeral Configurations With Machine Learning. *Journal of Numerical Cognition*, 9(1), 206-221. https://doi.org/10.5964/jnc.10441

What is decoding?

- Scalp distributions (SD) are varied across tasks & subjects
- Decoding with SD can allow prediction of taskrelated processes

Grootswagers, Wardle, and Carlson (2017)

Decoding in Neuroscience

- Lower accuracy than engineering applications (e.g., brain-machine interfaces)
- The goal is to test research hypotheses
- Data SNR is crucial
- Preprocessing steps might differ from traditional analysis

Approach

- Decode SD at each time point to predict numerical magnitudes, for each configuration.
- Compare temporal aspects of decoding accuracy to compare finger configurations
- Compare results with traditional analysis.

Bae & Luck (2018) Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials, *Journal of Neuroscience*, 38(2), pp. 409-422.

Mean Accuracy of Alpha-Based Decoding and ERP-Based Decoding Averaged Across All 12 FNCs

Note. The black horizontal line indicates the chance-level performance (1/12 ≈ 0.083 ≈ 8.3%). The shaded areas indicate ± 1 SEM.

					Alp	ha-k	base	d De	ecod	ing			
	C1	10.8%	8.6%	7.9%	8.4%	8.8%	7.4%	7.5%	8.0%	8.0%	9.1%	8.0%	7.6%
	C2	8.7%	9.9%	8.8%	8.2%	8.5%	8.3%	8.1%	7.6%	7.7%	8.2%	8.1%	7.9%
	C3	7.6%	8.9%	8.6%	8.5%	7.9%	8.6%	8.8%	8.4%	8.2%	7.9%	8.3%	8.4%
	C4	8.3%	8.2%	8.6%	9.6%	7.6%	7.9%	7.8%	8.5%	7.8%	7.7%	8.7%	9.3%
Stimuli (FNCs)	M1	9.0%	8.5%	7.6%	7.5%	9.2%	9.1%	8.3%	8.3%	9.0%	8.3%	7.7%	7.5%
	M2	7.5%	8.5%	8.6%	7.8%	9.0%	8.8%	8.9%	8.4%	8.6%	8.1%	8.3%	7.5%
	М3	7.5%	8.1%	8.8%	7.7%	8.2%	8.9%	9.2%	8.8%	8.5%	8.2%	8.0%	8.1%
	M4	7.8%	7.6%	8.4%	8.4%	8.1%	8.5%	8.9%	9.6%	8.0%	7.9%	8.3%	8.6%
	NC1	8.2%	7.7%	8.1%	8.0%	9.0%	8.6%	8.3%	7.9%	10.3%	8.6%	7.9%	7.4%
	NC2	9.0%	8.2%	8.1%	7.6%	8.4%	8.0%	8.2%	7.7%	8.7%	9.9%	8.2%	8.1%
	NC3	7.9%	8.0%	8.2%	8.9%	7.7%	8.3%	8.2%	8.3%	7.8%	8.2%	9.2%	9.3%
	NC4	7.7%	8.1%	8.4%	9.4%	7.5%	7.5%	7.9%	8.4%	7.4%	8.0%	9.4%	10.3%
		c^	Sr.	ථ	c⊳	14	m	Nº	MA.	~~~.	NC2	4 ^{C3}	NCA
Predicted Classes (FNCs)													

					ER	RP-ba	ased	l Dec	codi	ng			
	C1	16.9%	9.4%	7.1%	6.4%	8.9%	7.6%	6.8%	7.0%	6.1%	10.4%	7.1%	6.3%
	C2	9.4%	15.4%	8.9%	6.5%	8.5%	8.2%	6.9%	7.1%	7.3%	7.8%	7.2%	6.7%
	C3	7.2%	9.1%	13.4%	8.3%	7.2%	8.0%	8.0%	7.8%	7.3%	7.5%	8.0%	8.3%
	C4	6.4%	6.4%	8.4%	18.8%	6.8%	7.0%	7.7%	7.5%	6.6%	6.0%	8.8%	9.6%
(s)	M1	9.1%	8.6%	7.4%	7.1%	13.3%	8.7%	8.5%	8.2%	8.2%	8.4%	6.9%	5.6%
Stimuli (FNC	M2	7.3%	8.4%	8.0%	6.8%	8.6%	12.5%	9.6%	9.0%	8.7%	7.4%	7.3%	6.7%
	М3	6.9%	6.8%	8.0%	7.9%	8.6%	9.7%	13.6%	9.9%	8.0%	7.0%	7.2%	6.4%
	M4	7.1%	7.1%	7.5%	8.0%	8.5%	9.1%	9.9%	12.7%	8.0%	6.4%	8.1%	7.7%
	NC1	6.4%	7.3%	7.0%	6.6%	8.7%	8.0%	7.8%	8.3%	18.0%	7.2%	7.4%	7.2%
	NC2	10.3%	7.5%	7.6%	6.2%	8.2%	7.2%	7.1%	6.4%	7.5%	19.0%	7.0%	5.9%
	NC3	6.7%	7.2%	8.0%	8.5%	6.6%	7.6%	7.3%	8.1%	7.2%	7.1%	14.1%	11.6%
	NC4	6.2%	6.3%	8.7%	9.8%	5.5%	6.0%	6.4%	7.6%	7.0%	6.1%	11.2%	19.1%
	,	c^	Ŷ	ථ	C⊳	4	m	2	ns.	2°^ .	NC2.	ې ^{رې} ،	NCA
Predicted Classes (FNCs)													

Mean Accuracy of ERP-Based Decoding for Montring (M), Counting (C), and Noncanonical (NC) Configurations

Comparison of configuration types:

- Rerun the procedure for each conf.
- Compare the temporal aspects of avg. accuracy

Note. The black horizontal line indicates the chance-level performance (0.25 = 1/4).

The Percentage of Accurate Classifications for Each of the 4 FNCs

FNC	Average accuracy (%) M (SD)	Peak accuracy (%) <i>M</i> (<i>SD</i>)	Peak accuracy time (ms) M (SD)
Montring (M)	36.5 (6.6)	47.2 (8.9)	445.789 (186.629)
Counting (C)	44.3 (9.6)	57.7 (11.4)	506.316 (184.192)
Noncanonical (NC)	46.3 (10.9)	60.4 (12.6)	515.263 (194.377)
Montring		Counting (C)	Non-canonical (NC)

Results & Comparisons

- ERP-based more accurate than Alpha-based
- Early peak for alpha-decoding *might be* associated with the previous P1/N1 effect *(caution due to low acc. level)*

Results & Comparisons

 Decoding better informs when the three conditions diverge in processing (post-500ms).

Results & Comparisons

• Decoding allows a more detailed inspection of differences across conditions.

What about other ML algorithms?

Decoding Performance of 6 ML Algorithms Compared

Classifier	MATLAB	Detail
	function	
SVM	fitcecoc()	One. vs all, linear kernel
LDA	fitcecoc()	One. vs all, linear discriminant,
		Kernel: normal
NB	fitcecoc()	One. vs all
KNN	fitcecoc()	One. vs all, k=12 for decoding
		all FNCs and K=4 for
		category-specific decoding
DT	fitcecoc()	One. vs all
NN	fitcnet()	Input: [1,32], FC1: [10,32],
		FC2: [4,10] or [12, 10], output:
		[1,1]

Salehzadeh, R., Soylu, F., & Jalili, N. (2023) A Comparative Study of Machine Learning Methods for Classifying ERP Scalp Distribution. *Biomedical Physics & Engineering Express*. https://doi.org/10.1088/2057-1976/acdbd0

Bae & Luck (2018) Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials, *Journal of Neuroscience*, 38(2), pp. 409-422.

4 Comparison Metrics

$$\begin{aligned} Accuracy &= \frac{TP + TN}{TP + TN + FP + FN} \\ Precision &= \frac{TP}{TP + FP} \\ Recall &= \frac{TP}{TP + FN} \\ F1 - Score &= 2 \times \frac{Precision \times Recall}{Precision + Recall} \end{aligned}$$

TP: true positives, TN: true negatives FP: false positives, FN: false negatives

Classifier	Avg.	Precision	Recall	F-Score
	Accuracy			
SVM	15.46	15.57	15.46	15.51
LDA	13.45	13.53	13.45	13.49
NB	9.46	10.96	9.46	10.15
KNN	14.13	14.22	14.13	14.18
DT	10.98	11.13	10.98	11.06
NN	13.59	13.62	13.59	13.60

Category specific decoding

Confusion Matrices

(SVM)

(NN)

Montring (M)

М1	32.2%	23.5%	22.1%	22.2%
(FNCs)	23.2%	29.2%	25.1%	22.5%
Stimuli 80	22.3%	24.9%	28.2%	24.6%
M4	22.3%	22.5%	24.6%	30.7%
_	M1	M2 Bradiated Cla	M3	M4

Results

- SVM scores highest across all measures -> most reliable. NN & KNN perform well as well.
- DT close to chance-level in category specific, but better in all-categories \rightarrow DT better suited to decoding with high num. of classes.
- NC & C had higher accuracy than M across all
 - \rightarrow automaticity leads to more similar neural patterns
- Highest true positive rates for Non-Canonical, numbers 2 and 4 \rightarrow most distinguishable Non-canonical (NC)

Future Work

- Explore adjustments in preprocessing
- Test different parameter values with each algorithm.
- Test different forms of perceptual, cognitive, and socio-emotional processing --->

Current Study

Dr. Roya Salehzadeh

Lawrence Technological Uni.

Dr. Brian Rivera Dr. Nader Jalili University of Nebraska-Lincoln University of Alabama

Dr. Kaiwen Man University of Alabama

Thank you!

Firat Soylu

The University of Alabama fsoylu@ua.edu http://fsoylu.people.ua.edu Sabancı University **CS** Seminar

June 16, 2023

