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Motivation

● Improve analysis of EEG data using machine 
learning (ML) methods.

● Develop heuristics for analyzing neuroscience 
data with ML methods.



Outline

● EEG (Electroencephalogram)
● Use of EEG in cognitive neuroscience
● Traditional EEG data analysis methods
● Machine learning with EEG (and other neuro) data
● A path for future



Invention of EEG

● Hans Berger (1929)
– Also discovered Alpha 

waves
● Initially met with 

skepticism



Electroencephalogram

Figure taken from Nagel, S. (2019).

● Used for studying 
sensory, attentional 
& cognitive 
processes

● Cheap

● Non-invasive

● Easy to use with 
children



What does EEG measure?
● Voltage in each electrode relative to a 

reference electrode

● Signals are weak and have to be 
amplified (x10K-50K)

● Sampling rate ranges from 500 – 2000 
Hz

● Low/high pass filters to filter noise



Principles of EEG
● Measures electrical activity in 

the (mostly) cortex
● Activity oscillates at different 

frequencies
● Measured in hertz (Hz) 

cycles/sec
● Most activity is between 0-100 

Hz



Delta (1 – 3 Hz)

Theta (4 – 7 Hz) 

Alpha (8 – 12 Hz)

Beta (13 – 35 Hz)

Gamma (36 – 100 Hz)

Frequency Bands



● Event-related potentials

● Frequency analysis

● Time-frequency analysis
https://www.jonsprouse.com/courses/eeg-methods/time.frequency.pdf



Time

Voltage

ERPs

Figure: Courtesy of Steve Luck, ERP Bootcamp



Example: N170

Rossion & Jacques (2009)



N400
• Violation of a semantic expectation

I take my coffee with cream and sugar

I take my coffee with cream and dog

+

–

Figure: Courtesy of Steve Luck, ERP Bootcamp



Traditional EEG/ERP Analysis

● Determine relevant electrode sites
● Determine relevant time intervals
● Extract measurements 
● Conduct inferential stats 



Enter Machine Learning ...

● Fewer a priori assumptions about the spatial 
location and time intervals for effects

● Allows testing effects distributed across 
different electrode sites and time intervals

● Good for conducting research in new domains



Case Study
• 38 adult participants 

(13 female)

Soylu, F., Rivera, B.*, Anchan, M.*, & Shannon, N. (2019). ERP differences in processing canonical and 
noncanonical finger-numeral configurations. Neuroscience Letters, 705, 74–79. 
https://doi.org/10.1016/j.neulet.2019.04.032

Soylu, F. (2019). Public dataset: ERP differences in processing canonical and noncanonical finger-numeral 
configurations, Harvard Dataverse.

https://doi.org/10.1016/j.neulet.2019.04.032


Research Question:

Do previous experiences with montring and 
counting lead to higher automaticity?





Click to edit Master title style
● Click to edit Master text styles

– Second level
● Third level

– Fourth level
● Fifth level
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Click to edit Master title style
● Click to edit Master text styles

– Second level
● Third level

– Fourth level
● Fifth level



P1 (100-150 ms)

N1 (150-210 ms)

P3 (250-500 ms)





Results
• Higher behavioral performance for montring
• Higher P1/N1 positivity for montring

– Feature-based attention system, focusing on 
features matching with a template.

• Similar P3 for montring and counting 
– Memory allocation as opposed to use of counting 

or subitizing



“
”

The real voyage of 
discovery consists not in 
seeking new landscapes, 
but in having new eyes.

-Marcel Proust



Decoding with SVM

Salehzadeh, R.*, Rivera, B., Man, K., Jalili, N., & Soylu, F. (2023). EEG Decoding of Finger 
Numeral Configurations With Machine Learning. Journal of Numerical Cognition, 9(1), 206-
221. https://doi.org/10.5964/jnc.10441

https://doi.org/10.5964/jnc.10441


What is decoding?

● Scalp distributions (SD) 
are varied across tasks & 
subjects

● Decoding with SD can 
allow prediction of task-
related processes

Grootswagers, Wardle, and Carlson (2017)



Decoding in Neuroscience

● Lower accuracy than engineering applications 
(e.g., brain-machine interfaces)

● The goal is to test research hypotheses
● Data SNR is crucial
● Preprocessing steps might differ from traditional 

analysis



Approach

● Decode SD at each time point to predict 
numerical magnitudes, for each configuration.

● Compare temporal aspects of decoding 
accuracy to compare finger configurations

● Compare results with traditional analysis.



Bae & Luck (2018) Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained 
potentials, Journal of Neuroscience, 38(2), pp. 409-422.



26.7% (at 490 ms)

12.3 (at 220 ms) %





Comparison of configuration 
types:
● Rerun the procedure for 

each conf.
● Compare the temporal 

aspects of avg. accuracy

%36.5, 472 ms

%57.7, 506 ms 
%60.4, 604 ms, 



The Percentage of Accurate Classifications for Each of the 4 FNCs





Results & Comparisons
● ERP-based more accurate than Alpha-based
● Early peak for alpha-decoding might be 

associated with the previous P1/N1 effect 
(caution due to low acc. level)



Results & Comparisons

● Decoding better informs when the three 
conditions diverge in processing (post-500ms).



Results & Comparisons
● Decoding allows a more detailed inspection of 

differences across conditions.



What about other ML algorithms?



Decoding Performance of 6 ML 
Algorithms Compared

Salehzadeh, R., Soylu, F., & Jalili, N. (2023) A Comparative Study of Machine Learning Methods 
for Classifying ERP Scalp Distribution. Biomedical Physics & Engineering Express. 
https://doi.org/10.1088/2057-1976/acdbd0

https://doi.org/10.1088/2057-1976/acdbd0
https://doi.org/10.1088/2057-1976/acdbd0


Bae & Luck (2018) Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained 
potentials, Journal of Neuroscience, 38(2), pp. 409-422.



4 Comparison Metrics

TP: true positives, TN: true negatives
FP: false positives, FN: false negatives







Category specific decoding



Confusion Matrices



Results
● SVM scores highest across all measures -> most reliable. NN & KNN 

perform well as well. 
● DT close to chance-level in category specific, but better in all-

categories → DT better suited to decoding with high num. of classes.
● NC & C had higher accuracy than M across all 

→ automaticity leads to more similar neural patterns
● Highest true positive rates for Non-Canonical, numbers 2 and 4 → 

most distinguishable 



Future Work

● Explore adjustments in preprocessing
● Test different parameter values with each 

algorithm.
● Test different forms of perceptual, cognitive, and 

socio-emotional processing --->



Current Study
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