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Abstract
Objective.Machine learning (ML)methods are used in differentfields for classification and regression
purposeswithdifferent applications. Thesemethods are also usedwith various non-invasive brain
signals, includingElectroencephalography (EEG) signals to detect somepatterns in the brain signals.ML
methods are considered critical tools for EEGanalysis since could overcome someof the limitations in
the traditionalmethods of EEGanalysis such asEvent-related potentials (ERPs) analysis. The goal of this
paperwas to applyML classificationmethodsonERP scalp distribution to investigate the performance
of thesemethods in identifying numerical information carried in differentfinger-numeral configura-
tions (FNCs). FNCs in their three formsofmontring, counting, andnon-canonical counting are used
for communication, counting, anddoing arithmetic across theworldbetween children and even adults.
Studies have shown the relationship betweenperceptual and semantic processing of FNCs, andneural
differences in visually identifying different types of FNCs.Approach.Apublicly available 32-channel
EEGdataset recorded for 38participantswhile theywere shownapicture of anFNC (i.e., three categories
and four numbers of 1,2,3, and4)was used. EEGdatawerepre-processed andERP scalp distributionof
different FNCswas classified across timeby sixMLmethods, including support vectormachine, linear
discriminant analysis, naïve Bayes, decision tree, K-nearest neighbor, andneural network. The
classificationwas conducted in two conditions: classifying all FNCs together (i.e., 12 classes) and
classifying FNCs of each category separately (i.e., 4 classes).Results.The support vectormachinehad the
highest classification accuracy for both conditions. For classifying all FNCs together, theK-nearest
neighborwas thenext in line; however, the neural network could retrieve numerical information from
theFNCs for category-specific classification. Significance.The significance of this study is in exploring
the application ofmultipleMLmethods in recognizingnumerical information contained inERP scalp
distributionof differentfinger-numeral configurations.

1. Introduction

Machine learning (ML) methods have gained signifi-
cant attention across different fields, especially in the
domain of classification and regression, due to their
remarkable performance and diverse applications. In
recent years, thesemethods have also been increasingly
utilized with non-invasive brain signals, such as
Electroencephalography (EEG), functional near-infra-
red spectroscopy (fNIRS), functional magnetic reso-
nance imaging (fMRI), and magnetoencephalography
(MEG) for a wide range of purposes, including mental

disease diagnosis, medical image analysis, brain-
computer interface (BCI), and classification tasks [1].
Among all non-invasive brain signals, EEG signals are
popular ones that can be effectively analyzed using a
range of ML methods. The ML methods include but
are not limited to support vector machine (SVM),
linear discriminant analysis (LDA), naive Bayes (NB),
decision tree (DT), K-nearest neighbor (KNN), and
neural network (NN) algorithms. Each technique has
its unique strengths and limitations, making them
more suitable for different types of EEG data analysis
tasks [1–6].
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SVM is a powerfulML algorithm that can effectively
classify EEG data by constructing a hyperplane that
separates the different classes [1]. SVM is used with EEG
signals for emotion classification [7], emotion recogni-
tion [8], seizure detection in animals [9], visual compre-
hension [10], and facial recognition [11]. Several studies
have compared the performance of different ML meth-
ods in analyzing EEG signals. SVM has consistently
demonstrated superior accuracy compared to other
techniques and is considered one of themost commonly
usedmethods in thefield [12]. LDA is another classifica-
tion technique that finds the linear combination of fea-
tures that best discriminates between classes. LDA is one
of the commonly used methods with EEG signals for
feature selection, seizure detection, motor imagery clas-
sification, mental workload detection [13], and ERP
source time estimation using EEG signals. NB is a prob-
abilistic ML algorithm that assumes features are inde-
pendent and calculates the probability of the class given
the features [1]. NB classifier is usedwith EEG signals for
EEG classification [14], EEG autism detection [15], and
emotion classification [16, 17]. KNN is an ML method
that can be used for both classification and regression
tasks. In KNN, the classification criterion is based on the
distance between the known data point and its K neigh-
bors [1]. KNN has been successfully applied in various
EEG data analysis tasks, including emotion recognition
and seizure detection. Its ability to handle both classifi-
cation and regression tasks makes it a versatile tool for
analyzing EEG signals and has contributed to its wide-
spread use in the field of neurosciences [18]. DT is a
popularML algorithmused for analyzing EEG signals in
various applications. DTs operate by making choices
using the characteristics of the data. They begin at the
root of the tree and proceed by asking a series of ques-
tionsabout the features of the data, with each question
leading to a child node that provides an answer to the
question. DTs have been successfully applied in various
EEG data analysis tasks, such as epilepsy seizure predic-
tion [19], classification of the severity of trachea stenosis
from EEG signals [20], and arrhythmia detection [21].
NNs are awidely usedMLalgorithm that canbeused for
supervised classification and regression tasks. This
approach actually mimics the way our brain is struc-
tured and just like our brain, in this method, each layer
receives input signals from the previous layer, it then
performs calculations on these signals before passing
them on as output signals to the next layer.NNs have
been successfully applied in several EEG data analysis
tasks, including seizure detection, epilepsy detection
[22], EEG classification [23], motor imagery classifica-
tion [24], andmanyothers.

This study makes a valuable contribution to the
field of numerical cognition by utilizing ML methods
to decode the ERP scalp distribution of finger numeral
configurations (FNCs) over time. The goal of the study
was to identify the numerical information carried out
in FNCs and evaluate the performance of each ML
method. FNCs are categorized as montring (M),

canonical counting (C), and non-canonical counting
(NC). Across cultures, fingers have been utilized to
communicate numerical information, count, and per-
form arithmetic operations [25]. Finger-based interac-
tions also play a crucial role in early development,
providing access to fundamental mathematical con-
cepts such as one-to-one correspondence and whole-
part relations [26]. Various forms of finger processing
interact with the neural processes underlying numer-
ical cognition, and finger-counting strategies are com-
monly used by children across different cultures and
even by adults when solving mathematical and arith-
metical problems [27, 28]. Finger representation pro-
vides a natural and embodied expression of numerical
quantity that aids in numerical cognition [29]. There-
fore, understanding the influence offingers on numer-
ical cognition has been a vital area of research.

One research field in numerical cognition is study-
ing the differences in the perceptual and semantic pro-
cessing of FNCs. ERP analysis is a commonly used
method for this purpose [26], but it has limitations
such as the need to identify commonalities across scalp
distribution [30]. In response to the limitations of the
traditional methods including ERP analysis, innova-
tive approaches such as mass univariate and multi-
variate techniques have been introduced to the field of
numerical cognition research. These novel methods
offer the potential to overcome challenges and open
up exciting new avenues of analysis in this important
field of study. Among these novel methods, the use of
ML has attracted lots of attention where they could be
used to analyze the ERP scalp distribution of FNCs
over time to investigate the neuralmechanisms under-
lying numerical cognition. By decoding the numerical
information carried in FNCs and evaluating the per-
formance of different ML methods, this study con-
tributes to our understanding of how the brain
processes numerical information and the potential
role of finger-based interactions in numerical cogni-
tion. This paper utilized six ML methods to analyze a
publicly available EEG dataset collected from 38 parti-
cipants in an FNC experiment [31]. SVM, LDA, NB,
DT, KNN, and NN were the MML methods used in
this study which were chosen after conducting a litera-
ture review [1]. This study builds upon a previous
study that focused on using the SVMmethod for clas-
sifying ERP signals of FNCs on the same dataset [32].

The remaining paper is structured as follows:
section 2 introduced the methods; results were pro-
vided in section 3. Section 4 provided the discussion,
and the conclusionwas provided in section 5.

2.Methods

2.1. Participants
The original experiment had thirty-eight adult partici-
pants (20 female, M = 19.68 years, SD = 1.84) [5]. All
participants were native English-speaking undergraduate
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students, with no history of neurological illness and
normal or corrected-to-normal vision.

2.2. Stimuli and experimental procedures
The original EEG signals were collected in an experi-
ment in which participants were shown a picture of an
FNC for 500 ms followed by an Arabic numeral for
1000 ms. Then, participants were asked to press one of
the two buttons on a Logitech F310 game controller to
identify if the Arabic numeral showed the same
numerical magnitude as the FNC or not. The inter-
trial interval was 1200 ms, with a 300 ms additional
jitter (total ITI varying 1200–1500 ms) [26]. In total,
24 pictures consisted of three types of FNCs (i.e.,M, C,
NC), and four numbers of one to four separately for
the left and right handswere shown to the participants.
In a previous study [26], no significant differences
were found in the EEG signals between FNCs
performed by the left and right hands. Therefore, the
data from both hands were combined, resulting in 12
distinct categories representing the three FNC types
and four different numbers. The experiment was
composed of 10 blocks, and each block had 96 trials.
Each trial included a set of 12 unique FNC configura-
tions that were randomly sequenced within each
block. The experiment had a total of 960 trials, with 80
trials assigned to each of the 12 FNC configurations.
The order of stimuli was shown infigure 1.

2.3.Data acquisition and pre-processing
A BrainVision 32-Channel ActiChamp system, with
Easy Cap recording, Ag/AgCl electrodes, and an
international 10–20 system for electrode locations has
been used for collecting raw EEG data. The recording
sampling rate was 500 Hz, and the recording reference
electrode was defined as electrode Cz. In this study,
data pre-processing was completed in MATLAB using
various features of EEGLAB [33] and ERPLAB [34]
plugins. The data-pre-processing had several steps,
including re-referencing, filtering, epoching, artifact

detection, and artifact removal. First, the Czwas added
back to the data electrodes and the EEG data was re-
referenced to the average reference. Then, a 0.1 Hz
(half-amplitude cutoff) high-pass and an 80 Hz (half-
amplitude cutoff) low pass IIRButterworth filter
(24 dB/octave) was applied, and the data were
resampled at 250 Hz.

The EEG signals epoching was done between
500 ms before the stimulus onset (FNC presentation)
to 1500 ms after (stimulus offset) and then the 500 ms
pre-stimulus baseline was used for correcting epochs.
Eye blinks and eye movements were detected using a
moving window peak-to-peak threshold algorithm
(threshold 60 μV, window size 80 ms, window step
20 ms) and a step-like artifacts algorithm (threshold
50 μV, window size 200 ms, window step 100 ms);
respectively. In the end, epochs containing artifacts
(i.e., automatic and visual inspection) were excluded
(20.92%of trials, SD= 21.45). In addition, for the sake
of this study, only the epochs that preceded a correct
response (Arabic numeral validated correctly) were
included in the analysis (79.08% of trials). In the next
step, epoched data were filtered by applying a 6 Hz
(half-amplitude cutoff) low pass IIRButterworth filter
(24 dB/octave). The 6 Hz low-pass filter was selected
to avoid overlapping between alpha-power and ERPs
and to increase the signal-to-noise ratio for perceptual
processing [35]. Figure 2 represents the 12 FNCs and
the associated topography (Scalp Distribution) of
ERPs for Each FNC, at 500 ms, averaged across
participants.

2.4. General procedure for classification ERP scalp
distribution of FNCs across time
The overarching goal of this paper was to classify the
ERP scalp distribution of different FNCs using multi-
ple ML methods to compare their performance in
detecting FNCs’ differences. The general classification
procedure implemented in this paper was proposed by
Bae and Luke in 2018 for ERP decoding of spatial
attention and working memory which was a subject-
based classification across the desired time range [35].
Figure 3 represents the general classification proce-
durewhichwas completed in 9 steps described inmore
detail below:

Step 1: The first step in the classification process
involved loading the processed EEG data for each par-
ticipant separately.

Step 2: To ensure that the analysis was not biased
by any systematic ordering of the data, the processed
EEGdatawere randomly shuffled.

Step 3: The objective of the classification approach
was to decode the numerical information contained in
the brain signals over time. To achieve this, the data
was decoded for specific time points within the time
range of −500 ms to 1500 ms. To obtain a compre-
hensive result over time, 100 time points were extrac-
ted every 20 ms.

Figure 1. Stimulus presentation order for each trial.
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Step 4: Threefold cross-validation was imple-
mented by dividing the EEG data into three separate
blocks.

Step 5: At each time point, the ERP signals of all
classes were computed by taking the average of all
trials across all electrodes. These ERP signals were con-
sidered as the selected features for the classification.

Step 6: Two-thirds of the ERP signals at each time
point were used as input to train the classifier.

Step 7: Once the classifier was trained, its para-
meters were saved for future use.

Step 8: The trained classifier was then used to pre-
dict the labels of the remaining one-third of the data
thatwere not used for training.

Figure 2. 12 FNCs and the associated topography (ScalpDistribution) of ERPs for Each FNC, at 500 ms, averaged across participants.

Figure 3.Procedure of ERPdecoding analysis by Steven J Luck, Gi-Yeul Bae, andAaronMSimmons.
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Step 9: The predicted labels were compared with
the true labels to calculate the classification score. To
ensure that the data in all three blocks were used as the
test dataset, steps 5–9 were repeated three times for
each specific time point. As a result, three blocks of
classification scores were calculated for each time
point, whichwas averaged to obtain thefinal score.

Step 2 for each participant was repeated 10 times
(iteration = 10), which means that all steps 3–9 were
repeated for each participant 10 times. This resulted in
a 4D classification score with the dimensions of the
number of time points* the number of iterations* the
number of cross-validation blocks* and the number of
classes. The final classification accuracy was calculated
by taking an average of all participants. It should be
noted that since the goal was to classify ERP scalp dis-
tribution of FNCs, all electrodes were used for classifi-
cation (Fp1, Fz, F7, FT9, FC5, FC1, C3, T7, TP9, CP5,
CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, TP10, CP6, CP2,
C4, T8, FT10, FC6, FC2, F4, F8, Fp2, Cz).

Matlab fitcecoc() function was used for imple-
menting five of the classifiers (i.e., SVM, LDA, NB,
KNN, and DT). This function fits multiclass models
for the classifiers combined with error-correcting out-
put codes (ECOC). The ECOC model combines the
results ofmultiple binary classifications to solvemulti-
class categorization problems. Moreover, the
MATLAB fitcnet() function was used to train an NN
which trains a feedforward, fully connected neural
network for classification. TheNN in this study had an
input layer, a fully connected layer with 10 neurons, a
Relu activation function, another fully connected layer
with 10 neurons, and then a subsequent ‘SoftMax’
activation function that produces the network’s out-
put, namely classification scores and predicted labels.
Detailed information about all ML methods were
represented in table 1. It should be noted that all the
classification methods were implemented in two con-
ditions: (1) classifying all FNCs together and (2) classi-
fying category-specific FNCs. The classification steps
for these two conditions were identical, except for all
FNCs together there were twelve classes and for cate-
gory-specific classification, there were four classes to
predict.

2.5. Performance evaluation
Four metrics of overall accuracy, precision, recall, and
F-score were chosen to evaluate the performance of all

implemented classification methods. The followings
are the selected performancemetrics:

=
+

+ + +
Accuracy

TP TN

TP TN FP FN

=
+

Precision
TP

TP FP

=
+

Recall
TP

TP FN

- = ´
´
+

F Score
Precision Recall

Precision Recall
1 2

In the following formulas, TP (true positive) repre-
sents the number of FNCs correctly classified as
belonging to a certain class, while FN (false negative)
represents the number of FNCs incorrectly classified
as not belonging to this class. Similarly, TN (true
negative) represents the number of FNCs not belong-
ing to a given class that are correctly classified as such,
while FP (false positive) represents the number of
FNCs incorrectly classified as belonging to this class.
In addition to these measures, confusion matrices
were obtained that provided detailed information
about the predictability of each of the classes.

3. Results

3.1. Classification results of ERP scalp distribution
for all FNCs
Figure 4(a) compares the results of implemented ML
methods’ classification accuracy for the condition
where all FNCs (i.e., 12 classes) were considered. The
chance level accuracy, in this case, was 8.30% (1/12),
meaning that if the scalp distribution contains no
information about the FNCs, the classification accur-
acy should be around 8.30%. As shown in figure 4(a),
SVMhad the highest classification accuracy compared
to the other methods, 27% at 460 ms. KNN was next
with the highest classification accuracy after SVM,
24% at 460 ms. The range of classification accuracy of
each of the classifiers across subjects for the time range
of−500 ms to 1500 mswas also shown infigure 4(b).

Moreover, confusionmatrices for the two classifiers
with the highest classification accuracy were presented
in figure 5 to compare the decodability of each of the
FNCs. In the confusion matrices, the vertical axis typi-
cally represents the true classes or stimuli, while the
horizontal axis represents the predicted classes. The cell
values are normalized by the total number of

Table 1.Detailed information about theMLmethods and parameters.

Classifier MATLAB function Detail

SVM fitcecoc() One. versus all, linear kernel

LDA fitcecoc() One. versus all, linear discriminant, Kernel: normal

NB fitcecoc() One. versus all

KNN fitcecoc() One. versus all, k= 12 for decoding all FNCs andK= 4 for category-specific decoding

DT fitcecoc() One. versus all

NN fitcnet() Input: [1, 32], FC1: [10, 32], FC2: [4, 10] or [10, 12], output: [1,1]
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observations with the same true class. The diagonal
values indicate the probability of correct prediction for
each class, also known as the true positive rate. The
values outside of the diagonal in each row represent the
false positive rate, which refers to the instances where
other classes were incorrectly classified as the true class
in that row. The values outside of the diagonal in each
column represent the false negative rate, which refers to
the instances where the true class was misclassified as
other classes. As presented infigure 5, the FNCofNCof
number four had the highest true positive rate (19.1%)
for SVM, and the FNC of NC of number two had the
highest truepositive rate of 17.6% forKNN.

In addition to evaluating the classification accur-
acy, precision, recall, and F-score were also selected as
performance metrics for each classifier to allow for
comparisons. These metrics were calculated for each
individual class across all subjects, and an overall value
for each metric was determined by taking the average
across all classes. Table 2 summarized the calculated
values for the average accuracy, precision, recall, and

the F-score of all six ML methods for all FNCs. The
SVM model for classifying all FNCs had a precision
ratio of 15.57%and a recall ratio of 15.46%.

3.2. Classification results of ERP scalp distribution
for categories ofM,C, andNC
The selected ML methods were used for category-
specific classification where classification was done for
each category separately considering four numbers
(1, 2, 3, 4) as four classes. Results were provided in
figure 6 for three categories of M, C, and NC, and the
chance level accuracy was 25% (1/4). The chance level
accuracy of 25% means that if the scalp distribution
contained no information about the FNCs, the classi-
fication accuracy should be around 25%. As shown in
figure 6(a), for all category-specific classifications,
SVM was the classifier with the highest prediction
accuracy. SVM had the highest classification accuracy
of 42% for FNC of M at 340 ms, 51% for FNC of C at
420 ms, and 54% for FNCofNC at 600 ms. In addition
to SVM, the NN model had a classification accuracy

Figure 4. (a)Across time classification accuracy and, (b)Box-chart ofMLmethods for ERP scalp distribution of all FNCs.
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noticeably higher than the chance level accuracy (i.e.,
25%) for all three categories. The highest classification
accuracy was 40% for MC at 340 ms, 49% for C at
440 ms, and 52% forNC at 600 ms.

Figure 6(b) provided detailed information about
the performance of each of the MLmethods, including
the lowest classification accuracy, highest classification

accuracy, and median classification accuracy. For
example, for the classification of FNCM, SVM had the
lowest accuracy of 24.04%, the highest accuracy of 42%,
and the median value for the classification accuracy
was 31.31%.

The category-specific confusion matrices of two
classifiers of SVM andNNwere obtained and shown in
figure 7. According to the results, for the M category,
the highest true positive rate belonged to montring the
number one for both SVM and NN, 33.50% and
32.20%. Also, counting the number four had the true
positive rate of 40.70% and 37.80% for the SVM and
NN; respectively. For the NC category, SVM had the
highest true positive rate of 41.20% for non-canonical
counting of number two and NN showed the highest
true positive rate for the samenumber (40.0%).

Tables 3–5 also presented the various performance
measures obtained for the ML methods for M, C, and

Figure 5.Confusionmatrices of implemented (a) SVM, and (b)KNN for all FNCs.

Table 2.Performancemeasures ofML classifiers for all FNCs in
percentage.

Classifier Avg. Accuracy Precision Recall F-Score

SVM 15.46 15.57 15.46 15.51

LDA 13.45 13.53 13.45 13.49

NB 9.46 10.96 9.46 10.15

KNN 14.13 14.22 14.13 14.18

DT 10.98 11.13 10.98 11.06

NN 13.59 13.62 13.59 13.60
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NC. The SVM model classified the test ERP of the
scalp distribution with an average precision ratio and a
recall rate of 31.38% for the category ofM. This model
had a precision ratio of 36.08% and a recall ratio of
36.02% for the C category; a precision ratio of 37.38%
and recall ratio of 37.29% for the NC category. The
average precision ratio and recall rate for the NN
model, the second model with the highest classifica-
tion accuracy, are 30.08% for M; 34.58%, and 34.54%
forC; and 36.45% and 36.40% forNC.

4.Discussion

In this study, different ML models were implemented
for the classification of ERP scalp distribution of FNCs.
The EEG signals belonged to three categories of
montring, counting, and non-canonical counting for
the numbers1,2,3, and 4. The raw signals were pre-
processed (i.e., re-referencing, filtering, epoching,
first, artifact detection, and artifact removal) using a
customized MATLAB script. ERP scalp distribution

Figure 6. (a)Across time classification accuracy and, (b)Box-chart ofMLmethods for ERP scalp distribution classification for FNCs
ofM,C, andNC.
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Figure 7.Confusionmatrices of implemented (a) SVM, and (b)NN for all three categories ofM, C, andNC.

Table 3.Performancemeasures ofML classifiers forM in
percentage.

Classifier Avg. accuracy Precision Recall F-Score

SVM 31.38 31.38 31.38 31.38

LDA 29.44 29.45 29.44 29.45

NB 25.93 27.65 25.93 26.76

KNN 29.52 29.53 29.52 29.53

DT 25.00 — 25.00 —

NN 30.08 30.08 30.08 30.08

Table 4.Performancemeasures ofML classifiers for C in
percentage.

Classifier Avg. accuracy Precision Recall F-Score

SVM 36.02 36.08 36.02 36.05

LDA 33.60 33.62 33.60 33.61

NB 26.33 29.40 26.33 52.20

KNN 33.84 33.93 33.84 33.88

DT 25.00 — 25.00 —

NN 34.54 34.58 34.54 34.56
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was calculated from the processed EEG signals and
then used as input for classification purposes. The
classification procedure was a subject-based and time-
specific approach proposed by Bae and Luck [35]. The
applied ML methods for classifying FNCs were SVM,
LDA, NB, KNN, and DT implemented by MATLAB
fitecoc() function along with an NN classifier imple-
mented byMATLAB fitnet().

According to the classification accuracy results for
all FNCs, SVM was recognized as the most reliable
classification method among the implemented meth-
ods (i.e., LDA, KNN, NB, DT, NN), with the highest
classification accuracy of 27% achieved 460 ms after
showing the stimuli. Although the classification was
done for the time range of −500 ms (i.e., 500 ms
before showing the stimuli) to 1500 ms, the time range
of 200 ms to 700 ms was considered critical in this
paper since the processing of numerical information
included in FNCs happen at this time range [26, 32].
Accordingly, having the highest classification accuracy
for SVM at 460 ms was predictable and proves the
reliability of the classification method [32]. Also,
according to the results, all the ML methods had their
highest classification at this specific time range which
was a key time for most of the classifiers This was the
time that numerical information processing happened
[32]. The value of other performance measures,
including precision, recall, and F-score was presented
for the SVM and the other ML methods. These mea-
sures had close values to each other which means that
they had the same true and false positive rates. In addi-
tion, confusion matrices were also provided for classi-
fying all FNCs, and the highest true positive rate in
both SVM and KNN was obtained for NC of numbers
two and four. According to these results, it could be
concluded that the NC category was the most detect-
able compared to the other two categories ofM andC.

The classification accuracy of all category-specific
classifiers was higher compared to the condition that
all FNCs were classified together. The classifiers could
detect the numerical information present in FNCs in a
better way in category-specific classification. This
could be explained in this way that category-specific
classification eliminates FNCs hard to distinguish
from the data which resulted in improving the classifi-
cation accuracy.Moreover, the two categories of C and
NC had the highest classification accuracy in general

compared to the M, revealing that less distinguishable
processing takes place for montring because there is
not much effort needed to process montring com-
pared to the two other FNCs (i.e., C, and NC) [32, 36].
Also, non-canonical finger gestures were more pre-
dictable than the FNCs of C since the classification
accuracy for almost all the classifiers in this category
was in a higher range of threshold. In addition, SVM
and then NN had the highest classification accuracy at
the time range of 200 ms to 700 ms where the proces-
sing of numerical information happens for all three
categories, but DT didn’t have a good performance at
all because the classification accuracy was the same as
chance level accuracy (25%). One possible reason for
the difference in the performance of DT for the two
conditions could be the distribution of the data within
the categories. When the classifier is trained using the
one versus-all approach with 12 classes, the model has
access to more data from all 12 classes, which can
improve its ability to distinguish between them. On
the other hand, when the classifier is trained using 4
classes within a specific category, the model has access
to less data for each class, which canmake it harder for
the model to accurately distinguish between them. It’s
also possible that the choice of learner could play a role
in the performance difference. Different learners have
different strengths and weaknesses, and the decision
tree learner may be better suited to handling the 12-
class problem compared to the 4-class problem.
Moreover, according to the results of precision and
F-score reported in tables 3–5, DT has predicted all
instances to belong to a single which may be due to
insufficient data. Based on the category-specific con-
fusion matrices, M of number one, C of number four,
and NC of number two had the highest true positive
rate and were more predictable/decodable compared
to the other numbers in each category. According to
the confusion matrices obtained for both conditions,
it was concluded that the NC of number two has the
highest possibility of correct prediction.

It is important to acknowledge that the ML meth-
ods implemented in this study had certain limitations.
Specifically, the parameters of themodels were chosen
as the default values, whichmay not have been optimal
for the given dataset. However, the results obtained
from this study suggest that it is possible to reliably
detect numerical information in EEG signals provided
by FNCs. Moving forward, we plan to address these
limitations by tuning the parameters of the models in
future work. By doing so, we aim to improve the per-
formance of the classifiers and gain a better under-
standing of the underlying patterns in the EEG signals.

5. Conclusion

In this study, the ERP scalp distribution of FNCs was
classified using the ML methods of SVM, LDA, NB,
KNN, DT, and NN. A comparative study was carried

Table 5.Performancemeasures ofML classifiers forNC in
percentage.

Classifier Avg. accuracy Precision Recall F-Score

SVM 37.29 37.38 37.29 37.34

LDA 35.02 35.03 35.02 35.03

NB 26.75 31.19 26.75 28.80

KNN 35.5 35.64 35.56 35.60

DT 25.00 — 25.00 —

NN 36.40 36.45 36.40 36.42
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out to assess the performance of theMLmethod, using
a public database with EEG data from 38 subjects. The
results showed that SVM had the highest classification
accuracy among all the methods for classifying all
FNCs together and for category-specific classification.
In addition, the results indicated that KNN and NN
were also effective in exploiting the information
present in the ERP scalp distribution of FNCs. The
future work would be to the further testing perfor-
mance of the ML methods by changing the ECOC
classifier or the learners’ parameters such as changing
the kernel function for SVM and NB, changing the
discriminate type for LDA, adjusting the minimum
leaf size, minimum parent size, and prediction selec-
tion for DT, or retraining theNNwithmore layers and
neurons in the layers (i.e., change the network design).
Additionally, the other future direction would be
applying deep learning classifiers such as deep neural
networks, recurrent neural networks, and convolu-
tional neural networks to the dataset to capture the
differences between FNCs. Furthermore, in this study,
the ERP scalp distribution of FNCs was used as an
input for the classification which means that all the
EEG channels collecting signals were used. However,
the most effective EEG channels in distinguishing
FNCs could be detected first (i.e., channel selection) to
improve classification accuracy.
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