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Abstract Predicting long-term outcomes of interventions is necessary for educational and
social policy-making processes that might widely influence our society for the long term.
However, performing such predictions based on data from large-scale experiments might be
challenging due to the lack of time and resources. In order to address this issue, computer
simulations based on evolutionary causal matrices and Markov chain can be used to predict
long-term outcomes with relatively small-scale laboratory data. In this paper, we introduce
Python classes implementing a computer simulation model and presented some pilot imple-
mentations demonstrating how the model can be utilized for predicting outcomes of diverse
interventions.We also introduce the class-structured simulation module both with real exper-
imental data and with hypothetical data formulated based on social psychological theories.
Classes developed and tested in the present study provide researchers and practitioners with
a feasible and practical method to simulate intervention outcomes prospectively.

Keywords Intervention · Social outcomes · Computer simulation · Evolutionary causal
matrices · Markov chain
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1 Introduction

Given the considerable resource demands of implementing large-scale and long-term
interventions in authentic settings, predictions on expected outcomes of educational and
psychological interventions based on small-scale studies are highly useful. The previous
intervention studies have demonstrated that even one-time, short-term implementation of
interventions can produce significant long-term effects; for example, short-term interventions
promoting students’motivation and social adjustmentwere shown to have lasting effects even
after a couple of years [13,22,29]. Thus, policy makers and educators should carefully con-
sider such long-term, large-scale impacts of interventions when they intend to apply newly
developed intervention models. However, it would be difficult to predict such long-term,
large-scale outcomes solely based on laboratory data, collected during a short term, from a
small population. Furthermore, conducting large-scale intervention experiments to examine
long-term, large-scale outcomes would be difficult due to the costs and insufficient resources
[3].

Hence, we consider the computer simulation method as a potential candidate to address
this issue. In the present study, we aimed to develop multipurpose, flexible Python classes
for simulating outcomes of interventions based on relatively small datasets, such as data
from experimental laboratory studies. This simulation model was designed to enable users
to simulate predicted outcomes in diverse intervention conditions through iterative evolution
processes. This model was founded by the ideas of evolutionary causal matrices (ECMs) and
Markov chain [7,13].

1.1 Basics and theoretical foundations

1.1.1 Evolutionary causal matrices (ECMs)

Evolutionary biology developed ways of modeling how well individuals with specific traits
in a population can survive and reproduce successfully in an environment with predetermined
selective pressures. These efforts have enabled us to predict states of equilibrium in the long
run under a certain selection pressure [7,19]. We can utilize such theoretical framework to
examine effects of sociocultural factors as well as natural factors. The changes in populations
in a specific system influenced by such sociocultural factors can be predicted by simulating
evolutionary trends over time in the system.

For example, a previous study simulated how different types of cultural norms influence
people’s social behavior in terms of their norm conformity based on the theoretical framework
of cultural evolution [6,7,13]. In this simulation study, researchers set two different types of
populations, conformers and nonconformers. Conformers are people who tend to conform
to existing social norms, while nonconformers do not. They also set two different types of
hypothetical cultural systems. The first cultural system (C1) has sufficient resources that can
be distributed to all individuals. In C1, we can expect that norm conformers get more benefits
compared with nonconformers who might spend additional energy to violate the currently
available norms and rules. Consequently, this system will have more norm conformers, and
nonconformers will change into conformers over time. On the other hand, the second system
(C2) does not have sufficient resources available to individuals. In this case, nonconformers
are more likely to be successful. As a result, the number of nonconformers will increase,
and conformers will change into nonconformers over time in C2. The relative ratio of each
type of individuals in each system will arrive eventually at an equilibrium as proposed by the
theory of evolution.
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Table 1 Sample ECM A (t) B (t) C (t)

A (t + 1) .70 .50 .10

B (t + 1) .20 .30 .20

C (t + 1) .10 .20 .70

If we can count the number of individuals in each status, such as conformers and non-
conformers in the previous example, in a specific system at a specific time, t , then we can
also quantify transitions between different statuses over time in the system. For example, in
C1, 80% of current conformers remain the current status a year later, while 20% of them
become nonconformers. Meanwhile, 60% of current nonconformers change into conformers
a year later, while 40% of them remain in the same status. On the other hand, in C2, 90% of
current nonconformers maintain their current status a year later, while 10% of them become
conformers. Meanwhile, 70% current conformers become nonconformers a year after, while
30% of them maintain their current status. In C1, the number of conformers in the next year
can be estimated by calculating 80%× number of current conformers + 60%× number of
current nonconformers, and that of nonconformers can be estimated by calculating 20%×
number of current conformers + 40%× number of current nonconformers. Following the
same way, in C2, the number of conformers in the next year becomes 30%× number of
current conformers + 10%× number of current nonconformers, and that of nonconformers
becomes 70%× number of current conformers + 10%× number of current nonconformers.
If we repeat the same calculations, we can predict the long-term changes in systems quan-
titatively. We can express mathematically the longitudinal transitions between statuses in
systems in the form of ECM for long-term predictions and simulations [7].

In general, the ECM is a series of matrices representing transitions between t (indicating a
specific time point) and t +1 (the next time point in time-series data) in a certain evolutionary
system [6,19]. A certain matrix constituting ECM demonstrates the changes in the numbers
of populations situated in certain statuses between t and t + 1. For instance, consider an
evolutionary system that can be explained by a sample matrix, a certain constituent matrix
in ECM, represented in Table 1. If we say that 100 subjects are situated in each of three
conditions (A, B, and C) at t0, then the number of subjects in each condition at t0 + 1
becomes 130(= 100×(.70 + .50 + .10)), 70(= 100×(.20 + .30 + .20)), and 100(= 100×
(.10 + .20 + .70)), respectively. Thus, denoting the fraction of subjects in status S at time t
by FS(t), the following recursive equation holds [6,13].

FS (t + 1) =
∑

i∈P Fi (t)ECMi S
∑

i∈P

[
Fi (t)

∑
j∈p ECMi j

]

ECMi j refers to the element in i th row and j th column of the ECM, which represents the
transition rate between condition j at t to i at t + 1.

1.1.2 Markov chain

In this section, we briefly overview the concept of Markov chain, a mathematical tool that is
closely related to the ECM. Markov chain is primarily used to model and analyze systems
whose states evolve randomly over time and has been extensively studied and applied in a
variety of scientific and engineering fields [2]. For instance, Google’s PageRank [23] algo-
rithm, which is used to rank popular webpages, is based on a Markov chain model of user
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behavior. Another useful application ofMarkov chain isMarkov chainMonte Carlo (MCMC)
methods. Instead of capturing the dynamic of stochastic systems via the Markov chain, the
MCMC methods leverage the mathematical property of Markov chains to approximately
compute some quantities that cannot be computed directly or to obtain random sample from
a complicated distribution that does not allow for directly sampling.

Before we present a formal definition of Markov chains, we first define some notation.
Denote the state of a Markov chain at time t by X (t) ∈ S, where S is the (finite) state space.
Note that the state space S varies across applications. For instance, S = {0, 1, 2, . . .} if
one wants to capture the amounts of dollars that a poker player has at time t, S = R3 if
one wants to capture the 3D coordinates of a flying drone, and S = {0, 1} if one wants to
capture a binary state. A Markov chain is called discrete-time Markov Chain if its time axis
is discretized, i.e., t ∈ {0, 1, 2, . . .}, and the state of the Markov chain changes only at those
discretized time indices. If the time axis is continuous, and the state of the Markov chain
changes at any time, it is called continuous-time Markov Chain. In this work, it is sufficient
to limit our scope to discrete-time Markov chains.

A discrete-time Markov Chain is a stochastic process that satisfies the following “memo-
ryless” property.

P (X (t + 1) = xt+1|X (t) = xt , X (t − 1) = xt−1, . . . , X (0) = x0)

= P (X (t + 1) = xt+1|X (t) = xt )

That is, regardless of how the system reaches the state xt at time t , i.e., the history of the
dynamic systembefore time t , the transition from time t to time t+1 (or any other future states
of the system) depends only on the state xt at time t . Thus, one needs to specify the transition
behaviors between consecutive time slots to fully characterize a Markov chain. For instance,
the transition between time 0 and time 1 can be fully specified by a matrix P(0) ∈ [0, 1]|S|×|S|
whose (i, j) element P(0)

i, j = P (X (1) = j |X (0) = i). Note that the sum of each row is 1 to
have a valid probability distribution. Such a matrix is called a transition matrix. In a similar
way, one can specify transition matrices for every time slot, say (P(0), P(1), . . .) to fully
characterize a Markov chain. A Markov chain is called time homogeneous if P(t) = P for
all t and is called time-inhomogeneous otherwise.

One can observe that time-inhomogeneous Markov chains can precisely capture the idea
of ECM. That is, one can appropriately choose transition matrices based on the given ECMs
and one can precisely model the dynamics of the system. Hence, by leveraging a variety of
tools developed for Markov chains to analyze the ECM, we develop tools for running Monte
Carlo simulations (which estimate numerical outcomes for large-scale phenomena through
repetitive random sampling) of Markov chains, and hence systems that can be modeled by
ECM.

1.2 Current study

Use of Markov chains to predict outcomes of interventions is part of a larger trend, for
example in psychological sciences, where prediction as opposed to mere explanation takes
precedence in evaluating how well a theory can account for an phenomenon studied [30].
The distinction between explanation and prediction mainly concerns how a causal model is
evaluated. An explanatory model is tested based on how well it can account for the relations
between independent and dependent variables in data collected from a representative sample.
Explanatory models have three main weaknesses. One is overfitting, incorporating noise
or causal relations specific to the sample (but not to the population or, more widely, the
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phenomenon studied) into the model. Due to the problem of overfitting the model that best
explains the data are not always the one that best predicts future behavior [25]. The second is
p-hacking [26]—also called data dredging or data snooping—finding statistically significant
patterns that are not part of the a priori hypotheses. In this case, the casual relations emerging
fromdatamining are not driven by a priori theorizing.Given a large dataset and thewide range
of dataminingmethods, one can almost surely find significant effects in any dataset, but again
these effects actually can be due to sample-specific noise and are not generalizable, increasing
false-positive rates. The problem of overfitting can be addressed by cross-validation, which
involves building a model with one sample-specific dataset and testing it with a dataset from
a different, independent sample. In this way, casual relations presented in the model that
are actually due to sample-specific noise will be less likely to be validated with the data
from a different sample. Therefore, cross-validation provides a better way of estimating how
well a model can generalize to new data. An additional way of improving generalizability
is regularization, constraining the model with prior knowledge (a priori theorizing). In this
way, statistical analysis is not a “fishing trip” for significant effects but a test of a priori and
theory-driven models and hypotheses.

Problems of overfitting and p-hacking have lead to what is now called a “replication
crisis” most notably in psychology and medicine, where findings across many studies show
diverging results and are not replicated [17]. Some of the solutions proposed to remediate
the underlying causes for this crisis included more stringent protocols and conventions for
research [26], Bayesian statistics and meta-analysis [18], more appropriate and balanced use
of explanatory and predictive modeling [25], and use of predictive machine learning methods
[30].

Use of predictive machine learning methods provides enhanced ways of responding to
concerns with p-hacking and overfitting. Cross-validation is an inherent aspect of using
machine learning for prediction. Once the predictive model is trained with one dataset, it
has to be tested with a separate set to measure its predictive prowess. Regularization is
achieved by using cost functions that more stringently penalize deviations from the predicted
model, yielding simpler and more generalizable models. Use of predictive machine learning
also decreases the likelihood of introducing an intentional bias in the statistical analysis,
for example opting for conducting inferential statistics for specific patterns based on visual
inspection of data, even though these comparisons may not be part of the a priori planned
analysis. Finally, predictive models are more easily used in applied settings, narrowing the
gap between research and practice [25].

The previous studies on predictive modeling, for example in psychology, have demon-
strated that predictive simulation models produce reliable and valid outcomes coherent with
theoretical assumptions [13,31]. However, the previous simulation models were not able
to simulate complicated cases properly. For instance, Han et al.’s [13] simulation program
written in MATLAB was initially designed to predict long-term outcomes of educational
interventions when only one type of intervention was applied with a regular interval. Hence,
in order to address this limitation and make the simulation model applicable to diverse sit-
uations, the present study aims to develop a general-purpose simulation program enabling
users to predict outcomes in more complicated cases, such as when more than one type of
interventions is conducted, and when the intervals between occurrences of interventions are
irregular.

We developed an enhanced simulation program, in Python, based on ECM and Markov
chain for prospective uses in the fields of education and psychology. In order to test this
program, we conducted four simulations predicting long-term outcomes of interventions
with diverse conditions and intervals. For those simulations, we created ECM based on find-
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ings from the previously conducted moral educational intervention experiments [9,11,12]
(for simulations 1 and 2) and hypothetical ECM based on the previous social psycholog-
ical experiments (for simulations 3 and 4). In addition, we performed statistical analyses,
including t tests, mixed-effects analyses, and ANOVA, comparing outcomes between differ-
ent intervention conditions and different intervention intervals in order to test whether our
simulation program was able to produce simulation outcomes coherent with the previous
intervention experiments and psychological theories for explanatory purposes.

2 Materials and methods

2.1 Problem formulation and algorithm

We defined the following variables for the explanation of our algorithm:
groups: Number of different population (or sample) groups. For example, in the case of our

educational intervention simulation, groups = 2 (1: non-participants, 2: voluntary service
participants). In terms of the Markov chain terminology, this corresponds to the cardinality
of the state space |S|.

length: The total length of simulation. It indicates how many iterations will be performed.
We set length = 100 for our simulation. In terms of the Markov chain terminology, this is
the number of time steps that are simulated.

t: Current time point. t ranges from 1 to length. At the end of each iteration, t increases
by 1.

conditions: Number of different types of interventions simulated. In terms of the Markov
chain terminology, this indicates the number of different Markov chains we simulate.

status_t_now (t = 1 to length, group = 1 to groups): Number of populations (or samples)
situated in a specific t in each group (group). For example, in the case of our simulation, the
value in status_t_now (1,1) indicates the number of non-participants before the beginning of
the simulation.

schedule (t = 1 to length): Intervention schedule. A stored value indicates which type
of intervention is performed at a specific t. In terms of the Markov chain terminology, this
indicates the times at which certain transition matrices are applied to the Markov chain.

ECM (condition = 1 to conditions, group = 1 to groups): Evolutionary causality matrix
for each intervention condition. status_t_now is being updated during each iteration by cal-
culating the dot product of status_t_now and ECM (schedule (t), *). In terms of the Markov
chain terminology, this is the transition matrix corresponding to each intervention condition.

We aimed to study how to predict the long-term outcomes of educational interventions
efficiently when interventions types (schedule (length)), ECM for each intervention type
(ECM (conditions, groups)), and initial states were given (status_t_now (1, groups)). Thus,
our simulation algorithm was developed to estimate the number of populations (or samples)
in each group at specific t (status_t_now) by calculating the dot product of the current
status (status_t_now) and ECM (ECM) iteratively. It implemented the way of transition
calculation explained in introduction section. In order to examine the effects of different
types of interventions, multiple ECMswere created; a matrix was created for each designated
intervention condition. At a specific t, the type of matrix that was used for the dot production
was determined by a preset intervention schedule (schedule).

To evaluate the quality of our simulations, we compared the simulated outcomes with
actual intervention experimental data collected from classrooms [12]. Moreover, we also
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compared whether the simulate outcomes were consistent with what could be predicted
from developmental and social psychological theories related to the ideas of zone proximal
development (ZPD) and attainable goal setting [1,28]. We compared the number of student
populations situated in different groups (i.e., non-participants and service participants) after
conducting different types of educational interventions (i.e., attainable versus unattainable
exemplar story interventions, nonmoral interventions for the control condition) with different
intervention schedules.

The core algorithm of this iterative calculation process is explained in a flowchart (see
Fig. 1)

Fig. 1 Flowchart describing the core algorithm of our simulation model with ECM
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2.2 Intervention outcome simulation program

Wecreated classes for the simulation of outcomes of interventions based onECMandMarkov
chain. These classes were developed in Python. All Python source codes for classes and simu-
lation tutorials are available online as supplementarymaterials. These are downloadable from
the GitHub, https://github.com/xxelloss/Markov-Learning, or from the Dataverse, http://dx.
doi.org/10.7910/DVN/KBHLOD [14]. Readers can learn how to create and conduct their
own simulation by following the tutorials downloadable from the aforementioned reposi-
tory. There were two main classes constituting the simulation program: Markov_learning
(Markov_learning.py) and ECM_matrix (ECM_matrix.py).

Markov_learning class deals with the simulation model creation and evolution processes.
Users can define a specific simulation model using this class while setting multiple interven-
tion schedules containing different intervention conditions for further statistical comparisons.
This class implements the evolution of a certain system that is designated to perform a certain
intervention schedule from t = 0 to a specified period. ECM_matrix class contains a con-
stituent matrix of ECM corresponding to a certain intervention condition. This class consists
of a matrix representing transitions between t and t + 1 for each status. Methods included in
this class support the matrix creation and iterative calculation.

In each simulation model, one Markov_learning class is created. Users need to provide
required information, i.e., the number of intervention conditions (Markov_learning.conditions),
the number of different statuses (Markov_learning.size), the length of evolution period (from
t = 0 to the end) (Markov_learning.length), and the number of intervention schedules to be
analyzed (Markov_learning.schedules), as parameters at the moment of the creation of this
class. Once a Markov_learning class is created with all the required parameters, it automati-
cally creates multiple ECM_matrix classes (Markov_learning.ECM) according to the preset
number of intervention conditions; each ECM_matrix class is designed to be corresponding
to each intervention condition. Users then set each constituent matrix representing transi-
tions between time points and statuses for each intervention condition that is contained by
an ECM_matrix class (ECM_matrix.matrix).

Before conducting iterative calculation processes for evolution, users are required
to set initial statuses at t = 0 (Markov_learning.status_t0) and intervention schedules
(Markov_learning.schedule). First, initial statuses at t = 0 should be set. The number of
statuses follows a preset number, Markov_learning.size. For example, in the sample case
presented in introduction section, the initial statuses can be set in the form of an array [100,
100, 100]. Second, intervention schedules to be compared should also be determined. For
instance, once we set two different intervention conditions, A and B, we can set multiple
intervention schedules that will be compared after the end of the evolution process. If N rep-
resents the absence of intervention (control condition), then we may set several intervention
schedules, such as:

Schedule 1: A, N, A, N, A, N, A, …, N, A, N
Schedule 2: A, N, N, A, N, N, A, …, A, N, N
Schedule 3: A, B, N, A, B, N, A, …, A, B, N
Schedule 4: A, B, N, A, B, N, N, …, N, N, N
…
Schedule 10: N, N, N, N, N, N, N, …, N, N, N

The length of each schedule should be identical to the length of intervention periods,
specified during the creation of the Markov_learning class (Markov_learning.length). Also,
the number of schedules to bedetermined shouldbe identical to the preset number of schedules
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in the class, Markov_learning.schedules. Unlike the case of the previous simulation program
[13] that only enabled users to set intervention schedules containing only one intervention
condition and control condition with regular intervals (e.g., schedules 1, 2, and 10), the
simulationprogramdeveloped in the present study enables users to set scheduleswithmultiple
intervention conditions with irregular intervals (e.g., schedules 3 and 4).

Once all intervention conditions and schedules are set, evolution processes that are
constituted by a series of iterative transitions between t and t + 1, from t = 0 to
Markov_learning.length, can be initiated. Transitions in statuses between t and t + 1 are
calculated using the equation presented in introduction section. If the current t = 0, statuses
at t = 1 are calculated based on the preset Markov_learning.status_t0 values. Calculated
statuses at t + 1 are stored and updated in an array, Markov_learning.status_t_now. After
the end of the whole evolution processes until t = Markov_learning.length, status values
from t = 0 to t = Markov_learning. length are printed out in text files for further statistical
analyses. Each text file contains status values for each intervention schedule. The text files
were analyzed with STATA.

2.3 Sample simulations and dataset

In the present study, we performed a total of five simulations as pilots using the developed
classes. Three of them were based on an experimental dataset collected from intervention
experiments that were previously conducted [9–11]. These three simulation trials were per-
formed in order to predict long-term, large-scale outcomes of the educational interventions
designed by the previous intervention experiments that were conducted within a small-scale
context (laboratories and classrooms) during a short period (2–3 months). ECM for these
three simulation trials was created from the real experimental data. Two other simulations
were performed using ECM created from hypothetical cases. These simulation trials pre-
dicted outcomes from hypothetical intervention designs based on social and educational
psychological theory [1,5,8,16,27]. Further details pertaining to the nature of intervention
experiments and datasets are elaborated in each subsection in results section, focusing on
each simulation trial.

2.4 Statistical analyses

We conducted several statistical analyses in order to test whether the developed simulation
program could provide simulation results that were consistent with the findings from the
real experiments (simulations 1 and 2) and psychological theories (simulations 3 and 4).
In the case of simulations 1 and 2, we utilized t test and mixed-effects analysis methods
to test whether the different types and frequencies of interventions produce significantly
different outcomes as shown by the previous social psychological experiments [11,13]. In
the cases of simulations 3 and 4, we conducted mixed-effects analyses to examine whether
different types of hypothetical interventionsmight produce significantly different longitudinal
outcomes as predicted based on the previous social psychological theories [1,5,8]. Further
details pertaining to simulation and statistical methods are explained in each section below
introducing each simulation trial.
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Table 2 ECM for three conditions for simulations 1 and 2

Participant (t) Non-participant (t)

Attainable moral story condition

Participant (t + 1) .90 .44

Non-participant (t + 1) .10 .56

Extraordinary moral story condition

Participant (t + 1) .64 .12

Non-participant (t + 1) .36 .88

Control condition

Participant (t + 1) .72 .29

Non-participant (t + 1) .28 .71

3 Simulations and results

3.1 Simulation 1

In simulation 1, we simulated the long-term outcomes of moral educational interventions
based on experimental data collected by the previous experiments [9,11]. These experiments
tested what types of moral stories can effectively promote students’ engagement in prosocial
activities, particularly voluntary service activities. In these experiments, data collected from
54 college students were used. The students were randomly assigned to three groups: the
attainable and extraordinarymoral story groups, and the control group; 17, 18, and 19 students
were assigned to each group, respectively. The attainable group was presented with moral
stories demonstrating attainable voluntary service engagement (requires a commitment for
less than two hours per week) written by peer college students. The students assigned to the
extraordinary group were presented with stories of service engagement that were perceived
to be very difficult to emulate for college students (requires a commitment for more than
ten hours per week). The control group was presented with nonmoral stories, such as sports
news reports. Before the beginning of the intervention session, each student was provided
with a survey form asking the student’s initial voluntary service engagement. During the
intervention session, students were presented with the type of stories matching with their
group assignment. 1.5 months after the end of the intervention session, a, posttest, voluntary
service engagement survey form was distributed to the students.

From the collected dataset, we created three ECMs for three experimental conditions.
These ECMs demonstrate changes in the number of service participants and non-participants
between the pre- and posttest periods. Table 2 showsECMfor the attainable and extraordinary
moral story conditions, and the control condition.

We conducted iterative evolution processes from t = 0 to 100 (100 iterations) using the
created ECM. The time gap between t and t + 1 was 1.5 months, which was identical to
the actual time gap between the pre- and posttests in the intervention experiment. We set
[127 (participants), 111 (non-participants)] as the initial value at t = 0. While conducting
the evolution processes, we applied different intervention frequencies to examine what is
the minimum required frequency of interventions to produce significant outcomes. More
specifically, we set 50 different schedules with different intervals as follows:

Schedule 1 (no interval, one I per every 1.5 months): I, I, I, I, …., I, I, I, I
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Fig. 2 Change in the mean number of participants and non-participants in each condition across different
intervention schedules (intervals) in simulation 1

Schedule 2 (interval = 1, one I per every 3 months): I, C, I, C, …., I, C, I, C
Schedule 3 (interval = 2, one I per every 4.5 months): I, C, C, I, …, I, C, C, I
…
Schedule 50 (interval = 49, one I per every 75 months): I, C, C, C, …, C, C, C, C
(I: intervention, C: control condition)

We performed evolution processes for these 50 intervention schedules for both inter-
vention types, attainable and extraordinary moral story interventions. After performing all
evolution processes, we compared the mean number of service participants versus that of
non-participants in each intervention schedule using the t test. We examined the significance
of the difference and resultant Cohen’s D value as the indicator for effect size in each interven-
tion schedule. In the case of the calculation of p values, we applied Bonferroni’s correction
for multiple comparisons, since we simulated three different experimental conditions.

Figure 2 shows how themean number of participants and non-participants changes accord-
ing to the type and frequency of intervention. Figure S1 demonstrates changes in the p value,
and Fig. 3 demonstrates Cohen’s D value from schedule 1 to 50 when the attainable moral
story intervention was applied. Overall, the attainable moral story intervention positively
contributed to the increase in service participants, and this result was in line with the origi-
nal experimental study [11]. According to the result, the attainable moral story intervention
should be applied at least once per every 36 months (schedule 24) in order to produce a
statistically significant difference (p < .05) between the numbers of service participants
and non-participants. Furthermore, in terms of the effect size, the intervention should be
conducted at least once per every 15 months (schedule 10) to produce a large effect size
(D > .8) or per every 36 months (schedule 24) to produce a medium effect size (D > .5).

Figures 4 andS2 showoutcomeswhen the extraordinarymoral story and control conditions
were compared. Overall, this intervention decreased the number of participants. The t tests
indicated that first, when this intervention was applied at least once per every 48 months
(schedule 32), the difference between the numbers of service participants andnon-participants
became statistically significant at p < .05 (see Fig. S2). Second, the intervention should be
conducted at least once per every 15 months (schedule 10) to produce a large effect size
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line: Cohen’s D value resulted from the t test comparing participation rate between the extraordinary story
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(D > .8) or per every 36 months (schedule 24) to produce a medium effect size (D > .5)
(see Fig. 3).

Simulation 1 demonstrated how the developed simulation program can predict long-term
outcomes of different types of interventions based on relatively short-term, small-scale exper-
imental data. The overall simulation results were coherent with the findings from the previous
intervention experiment that reported significant differences in the promotion of service par-
ticipants between different intervention conditions. The simulation was also able to estimate
the required minimum frequency of the application of interventions in order to produce
significant outcomes with a large effect size.
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Fig. 5 Change in mean number of participants and non-participants in simulation 2

3.2 Simulation 2

In simulation 2, we examined cases when interventions were applied irregularly. In other
words, simulated intervention schedules in this simulation were designed to have irregular
intervention intervals. We set 50 different intervention schedules (from t = 0 to 100, 100
iterations) using the same dataset and ECM used in simulation 1. Also, identical to simu-
lation 1, we used [127 (participants), 111 (non-participants)] as the initial value at t = 0.
From schedule 1 to 50, the intervals between interventions became sparser. Below are some
examples for the schedules:

Schedule 1: I, C, I, C, I, C, I, C, I, C, I, C, I, C, I, …
Schedule 2: I, C, I, C, C, I, C, C, C, I, C, C, C, C, …
Schedule 3: I, C, I, C, C, C, I, C, C, C, C, C, I, C, …
…
Schedule 50: I, C, I, C, C, C, C, C, C, C, C, C, C, …
(I: intervention, C: control condition; irregular intervals)

We examined whether the number of service participants decreased as the intervention
applied less frequently (higher schedule number) when the attainable story intervention
applied by conducting mixed-effects analysis. The number of service participants was set
as the dependent variable. The designated fixed effect was the schedule number, which was
negatively associated with the intervention frequency. We set t as the random effect.

Figure 5 demonstrates change in the mean number of service participants and non-
participants from schedule 1 to 50. The result of the mixed-effects analysis reported
that the fixed effect, the schedule number, was significant in the mixed-effects model,
B = −.14,SE = .01, z = −19.01, p < .001, 95% CI [−.15 − .12], f 2 = .08. In other
words, service participation was less likely to be promoted as the attainable story intervention
was applied less frequently. Unlike the previously developed simulation program that only
allowed the simulation of intervention outcomes when interventions were applied regularly,
simulation 2 showed that the simulation program developed in the present study was able to
simulate cases with irregular application of interventions.
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Table 3 Hypothetical ECM for three conditions for simulations 3 and 4

High participant (t) Low participant (t) Non-participant (t)

Attainable story condition

High participant (t + 1) .30 .20 .10

Low participant (t + 1) .60 .70 .60

Non-participant (t + 1) .10 .10 .30

Extraordinary story condition

High participant (t + 1) .70 .60 .10

Low participant (t + 1) .20 .30 .20

Non-participant (t + 1) .10 .10 .70

Control condition

High participant (t + 1) .30 .10 .05

Low participant (t + 1) .50 .40 .15

Non-participant (t + 1) .20 .50 .80

3.3 Simulation 3

In this simulation, we created a simulation model based on the theoretical framework of
social psychology pertaining to how attainable and extraordinary exemplary stories differen-
tially influence subjects’ motivation. According to Bandura and Schunk’s [1] seminal work,
setting proximal goals, instead of distal goals, promotes self-efficacy, academic motivation,
and achievement more effectively [32]. Similarly, the following experimental studies have
shown that presenting attainable exemplars and goals was more likely to promote motiva-
tion compared to presenting extraordinary exemplars and goals [5,16]. Merely presenting
extraordinary exemplars to people, particularly who did not originally participate in the same
behaviors presented by the exemplars, might backfire and decrease the motivation for emula-
tion [20,21]. Instead, such extraordinary exemplars that are perceived not to be emulatable to
ordinary people might promote motivation among people who already engage in the behav-
iors of the exemplars. Given the idea of ZPD proposed by Vygotsky [28], such extraordinary
exemplars might work as scaffoldings for current participants; after watching more demand-
ing exemplary stories, such current participants might be motivated to do more challenging
tasks.

Based on these psychological studies, we hypothesized that first, the presentation of
extraordinary exemplars might reinforce engagement among current participants, but might
not make non-participants start engagement. Second, attainable stories might effectively
motivate non-participants to initiate participation, but might not intensify the strength of
engagement among current participants. Thus, we created three hypothetical ECM, one for
the attainable story condition, one for the extraordinary condition, and one for the control con-
dition (see Table 3). The nature of each condition was similar to that in simulation 1. Because
the previous two simulations based on real data did not differentiate different degrees of
participation, in these ECMs, we differentiated current participants into two categories: high
and low participants.

Similar to simulation 1, we performed evolution processes from t = 0 to 100 (100 iter-
ations) and compared 50 different intervention schedules. We set [100 (high participants),
100 (low participants), 100 (non-participants)] as the initial values at t = 0. In order to see

123



Simulating outcomes of interventions using a multipurpose. . .

65

75

85

95

105

115

125

135

145

155

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Interven�on schedule

Mean number of high vs. low par�cipants

High par�cipants Low par�cipants

Fig. 6 Change in mean number of high participants and low participants in simulation 3

how the extraordinary story intervention boosted high participants, we included both the
extraordinary and attainable story interventions in the schedules with different intervals. The
intervals between the applications of the extraordinary story intervention were adjusted. Here
are the created intervention schedules:

Schedule 1 (no interval): E, E, E, E, …., E, E, E, E
Schedule 2 (interval = 1): E, A, E, A, …., E, A, E, A
Schedule 3 (interval = 2): E, A, A, E, …, E, A, A, E
…
Schedule 50 (interval = 49): E, A, A, A, …, A, A, A, A
(A: attainable intervention, E: extraordinary intervention)

As shown above, the extraordinary story intervention was performed less frequently as
the schedule number increased. As we hypothesized, the mean number of high participants
was expected to decrease and that of low participants was expected to increase as the sched-
ule number increased. In order to test these hypotheses, two mixed-effects analyses were
conducted. For both analyses, we set the schedule number as the fixed effect and t as the
random effect. In the first analysis, the number of high participants was set as the dependent
variable, while the number of low participants was set as the dependent variable in the case
of the second analysis.

The results of the mixed-effects analyses demonstrated that first, the schedule number
was negatively associated with the number of high participants, B = −.12, SE = .01,
z = −.21.30, p < .001, 95% CI [−.13−11], f 2 = .09 (see Fig. 6). Second, when the num-
ber of low participants was set as the dependent variable, the schedule number was positively
associated with this dependent variable, B = .38, SE = .01, z = 27.91, p < .001, 95%
CI [.35 .41], f 2 = .16 (see Fig. 5). As the application of the extraordinary story interven-
tion became more frequent, the number of high participants significantly increased. Instead,
when the extraordinary story intervention was performed less frequently, in other words,
the frequency of the attainable story intervention increased, the number of low participants
increased. These findings were coherent with our hypotheses and the previous psychologi-
cal studies that have discussed the differentiated influences of attainable and extraordinary
exemplars on motivation among different populations.
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3.4 Simulation 4

In this simulation, we used the ECM created in simulation 3 in order to simulate whether the
order of different types of interventions significantly influenced outcomes (e.g., attainable—
extraordinary vs. extraordinary—attainable). Here are five intervention schedules simulated:

Schedule 1: A, E, C, A, E, C, …., C, A, E, C, A, E
Schedule 2: E, A, C, E, A, C, …., A, C, E, A, C, E
Schedule 3: A, A, C, A, A, C, …, A, C, A, A, C, A
Schedule 4: E, E, C, E, E, C, …, E, C, E, E, C, E
Schedule 5 (control condition): C, C, C, C, C, C, …, C, C, C, C, C, C
(A: attainable intervention, E: extraordinary intervention, C: control condition)

Similar to the previous simulation, we performed evolution processes from t = 0 to 100
(100 iterations) with the initial values [1000 (high participants), 1000 (low participants), 1000
(non-participants)] at t = 0.

According to the previous psychological studies that have demonstrated different influ-
ences of different types of exemplars on motivation [1,5,16,28], we hypothesized that the
number of high participants, participants showing strong engagement, would be maximized
when the attainable story intervention was performed followed by the extraordinary story
intervention. In order to test this hypothesis, we conducted mixed-effects analyses. The num-
ber of intervention schedules was set as the fixed effect; to examine which intervention
schedule performed best, we treated the schedule number as a categorical variable. We set t
as the random effect. Similar to the previous simulation, both the numbers of high and low
participants were used as dependent variables. Furthermore, we performed one-way ANOVA
to figure out which intervention schedule outperformed the other in terms of the numbers of
high and low participants. For the post hoc test, we utilized Scheffe’s method.

The results from the mixed-effects analyses are presented in Table 4. As shown, we
found significant differences in the numbers of three different types of participants between
different intervention schedules. Furthermore, the results of the one-way ANOVA and post
hoc tests also demonstrated significant differences as well (see Table 5). In the case of the
high participant number as the dependent variable, schedules 1 and 4 showed the similarly
highest, while the control condition, schedule 5, showed the lowest number. In the case of
the number of low participants, schedules 1 and 2 both showed the greatest mean values,
while schedules 4 and 5 both showed the smallest mean values. Finally, when we examined
the number of non-participants, schedule 5 showed the highest value, while schedules 1
and 3 both showed the lowest values; in other words, the number of participants including
both high and low participants was highest when schedule 1 or 3 was applied. Given these
findings, in order to maximize participation regardless of its degree, schedule 1 or 3 was most
effective. Between these two schedules, schedules 1 and 3, schedule 1 was more effective
to increase the number of high participants. These findings supported our hypothesis based
on the previous psychological studies that the attainable story intervention followed by the
extraordinary story intervention should be applied to effectively promote overall engagement,
and eventually, strong engagement.

4 Discussion

Large-scale implementation efforts require making decisions about duration, frequency, and
sequencing of different types of interventions to maximize learning outcomes. To facilitate
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decision making about these implementation parameters, we developed and tested a new
multipurpose simulation program, implemented in Python, enabling researchers, educators,
and policy makers to simulate long-term outcomes of interventions using relatively small
datasets. Unlike the previously published studies that also used ECM and Markov chain to
address a specific research question with a single dataset [13,31], we developed a simulation
program that can perform simulations with different datasets, including both a real labora-
tory dataset and a hypothetical dataset created based on the previous psychological studies.
In addition, the presented program allows simulating multiple interventions with different
duration and sequencing configurations. This builds on our previous work that focused on
simulating outcomes of a single intervention with varying durations and frequencies [13].
Findings from the present study suggested that users will be able to utilize our simulation
program to scale-up their intervention designs that were initially developed in a small scale
or to set hypotheses for long-term, large-scale experiments based on small-size pilot data.

As we mentioned in the introduction, even brief psychological and educational inter-
ventions can produce significant long-term outcomes, so researchers, educators, and policy
makers should be cautious when they intend to apply interventions initially developed in
a laboratory to real educational settings. In order to address this issue, our simulation pro-
gram can provide useful insights regarding types of interventions, frequencies of intervention
application, and intervention schedules in order to maximize positive intervention outcomes.
Furthermore, as we did in simulations 3 and 4, it is possible to create hypothetical ECM that
reflect theoretical assumptions and simulate long-term evolution processes with our program.
Because it would be difficult to conduct large-scale longitudinal experiments to measure the
actual effectiveness of interventions, due to limited time and resources, the developed simu-
lation program will enable researchers to conduct such experiments, to formulate hypotheses
for their experiments based on the previous studies. In addition, because we programmed
Python classes to implement the simulations, instead of programming customized simulation
programs, the present study can enable users to create their own simulation models using
their own datasets. Users can perform their own simulations by modifying one of the tutorial
source codes that implemented the four simulations.

Using computational models to support decision making about large-scale implemen-
tations aligns with the current emphasis on evidence-based practices in education [24],
burgeoning efforts in connecting insights from laboratory studies with educational prac-
tice and policy-making [4], and proposals on enhanced rigor of predictive models over
explanatory models in psychology [30]. Here we presented a platform for the application
of Markov models to extrapolate results from short-term, small-scale intervention studies to
inform large-scale implementations. Computational predictive models provide researchers
and practitioners with an analytic method to connect evidence from smaller-scale laboratory
or classroom studieswith larger-scale practices and policies. One impediment formainstream
adoption of such methods is the technical complexities and difficulties of developing com-
putational models for educational researchers, who are not trained with these methods. We
addressed this by developing and making available a set of Python libraries. The simulation
platform presented here can be used by researchers doing work in a wide range of fields in
education (e.g., special education, literacy, STEM education).

Predictions for future outcomes can also be conducted by using deep learning [13,15].
Deep learning is a promising machine learning algorithm that can efficiently learn from
collected data (or so-called training data) and expose implicit hidden patterns or structures
within the data, called the model. Once the model is learned, it can be used to predict unob-
served cases, often achieving the state-of-the-art prediction accuracies over any othermachine
learning algorithms. Various deep learning architectures for different target applications have
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been proposed and shown successful in the literature: CNN (convolutional neural network)
for computer vision tasks and RNN (recurrent neural network) for tasks involving sequences
(such as speech recognition and language processing) are the prototypical architectures [28–
30]. Indeed, one may be able to achieve an improved prediction performance by applying
deep learning, especially the RNN-type architecture, to our task.

However, we decided to use the ECM andMarkov chain method in the present study given
its strengths compared with the deep learning method. Although the deep learning method
can detect and model complex nature of collected data, models learned by deep learning
are constituted by numerous hidden layers with nonlinear activations, making them black
boxes that are not interpretable. Further, the deep learning approach typically requires a
much larger amount of training data due to its large number of parameters and requires larger
computational power [31,32]. In contrast to these drawbacks of the deep learning models,
our ECM-based approach provides interpretable model parameters and prediction results
[6] as well as possesses much fewer number of parameters, resulting in low computational
overheads [1].

There are several limitations in the present study. First, although we developed Python
classes for simulations, users who do not have any knowledge of Python and computer
programming cannot conduct their own simulations with our program. This limitation might
be critical to educators and educational policy makers who are potential users of this program
but without programming skills. In order to address this issue, a graphical user interface
(GUI) providing a visualized access to the classes should be developed. We plan to address
this limitation by developing a GUI module that provides end users with easy access to
the developed classes. We will develop both a cross-browser GUI with PyJamas and class-
platform GUI with appJar in order to enable end users to use these classes with ease, both in
online and in offline modes.

Second, this simulation module based on ECM and Markov chain can only predict out-
comes in the form of categorical variables; it would be difficult to include covariates (e.g.,
demographical variables) other than designated ECM to the simulation model. These lim-
itations might prevent potential users who intend to examine effects of associations and
interactions between multiple variables. Hence, future studies should test other computer
simulation methods, such as the aforementioned deep learning, in order to implement more
sophisticated simulations for complicated cases. We intend to develop a deep-learning-based
simulation program with Google’s multipurpose deep learning tool, TensorFlow.We are cur-
rently conducting a pilot test with TensorFlow to simulate the intervention dataset. Results
from this deep learning simulation will be compared with those from traditional prediction
methods, such as regression analysis, to examine whether the deep learningmethod can allow
us to predict intervention outcome more accurately.

Third, the developed simulation can only be used for predicting outcomes and not for
inferential statistics. Although we presented some results associated with statistical signifi-
cances and effect sizes, these results were introduced only for explanatory purposes, not for
suggesting that future users can use our simulation classes for statistical tests. We consider
implementing the developed classes in R that provides functionalities for more sophisticated
statistical analyses in order to address this limitation.
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5 Supplementary materials

All Python source codes for classes and simulation tutorials are downloadable from the
GitHub, https://github.com/xxelloss/Markov-Learning, or from the Dataverse, http://dx.
doi.org/10.7910/DVN/KBHLOD [14]. NumPy, Pandas, Statsmodels, and SciPy should be
installed to use Markov learning.
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